

Rapid Identification of New Psychoactive Substances by Multinuclear NMR Spectroscopy

James M Hook¹, Douglas Lawes¹, Erika Davies¹, Wendy Charng², Helen Salouros² and Michael Collins²

¹ Mark Wainwright Analytical Centre, University of NSW, Australia, 2052

² Forensic Drug Laboratory, National Measurement Institute, 105 Delhi Rd, Riverside Corporate Park, North Ryde, NSW 2113, Australia

Australian Government

National Measurement Institute

Motivation

- Amphetamines eg ICE & Ecstacy, are the most commonly trafficked fully synthetic drugs, but there is an increasing trend towards other so-called 'designer drugs'.
- Typically, analogues are of prohibited psychoactive drugs; structural changes are aimed at circumventing legal controls whilst retaining psychoactivity.
- Explosion in the number of these new psychoactive substances appearing in Australia and around the world,
- Need for rapid identification and classification in order to assist law enforcement and protect the community.
- Most of these psychoactive compounds contain –N, and here we demonstrate that, together with ¹H and ¹³C Analysis, ¹H-¹⁵N 2D NMR correlation spectra are especially useful as part of routine screening.

Synthetic	о Ш	Cathinones	Phenethylamines
Cannabinoids		^{NH₂} Cathinone (left) is a stimulant that occurs naturally in the leaves of a plant native to	NH ₂ The phenethylamines include endogenous compounds, such as
Non-classical cannabinoids,	CH_3	many East African countries, and is an unstable structural analogue of	o dopamine, and naturally occurring

synthetic compounds that

Fig.1 THC

act upon cannabinoid receptors in the brain, but are structurally unrelated to tetrahydrocannabinol (THC, Figure 1). Legitimate research into families of cannabimimetics (like those below) as potential analgesics has spawned less scrupulous interest in similar compounds as potential recreational drugs with cannabis-like effects.²

Fig. 3 Cathinone amphetamine.²

All cathinone derivatives are examples of keto-phenethylamines, and are distinguished by the ketone functional group adjacent to the phenyl ring.

Numerous analogues of *meth*cathinone are now available, most of which involve substitution of the aromatic ring, or substitution at the amino group.

Fig. 5 Mescaline, the hallucinogenic compound found in the peyote cactus. compounds, such as mescaline (Figure 5). They are known as 2Cs,³ referring to the two carbon atoms between the amino group and the phenyl ring.

Substitution of methoxy groups at the 2 and 5 positions on the phenyl ring and/or iodine or bromine at the 4 position results in increased hallucinogenic effects.

Fig. 6 (anticlockwise from top right) Chemical structure of 2-(2,5dimethoxyphenyl)-N-(2-methoxybenzyl)ethanamine; ¹H-¹³C HSQC experiment (15 mins); ¹H-¹³C HMBC experiment (20 mins); ¹H-¹⁵N HMBC experiment (50 mins). Black ovals identify significant correlations that are indicative of phenethylamine derivatives.

Compound **1**:

5-fluoropentyl

analogue of

AB-PINACA

Fig. 4 (anticlockwise from top right) Chemical structure of 3,5methylenedioxypyrovalerone; ¹H-¹³C HSQC experiment (85 mins); ¹H-¹³C HMBC experiment (360 mins); ¹H-¹⁵N HMBC experiment (180 mins). Black ovals identify significant correlations that are indicative of cathinone derivatives.

Fig. 2 (anticlockwise from top right) Chemical structure of N-((3s,5s,7s)-adamantan-1-yl)-1-(5-fluoropentyl)-1H-indazole-3-carboxamide; ¹H-¹³C HSQC experiment (105 mins); ¹H-¹³C HMBC experiment (140 mins); ¹H-¹⁵N HMBC experiment (130 mins). Black ovals identify significant correlations that are indicative of this class of cannabimimetics.

Fig. 7 (anticlockwise from top right) Compound 1 2D correlation experiments: ¹H-¹⁵N HSQC (60 mins); ¹H-¹³C HSQC (100 mins); ¹H-¹³C HMBC (140 mins); ¹H-¹⁵N HMBC (130 mins).

Black ovals highlight some significant correlations, including the indazole and amide nitrogens, and the carbonyl carbons

N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-1-(cyclohexylmethyl)-1*H*-indole-3-carboxamide

Fig. 8 (anticlockwise from top right) Compound **2** 2D correlation experiments: ¹H-¹⁵N HSQC (60 mins); ¹H-¹³C HSQC (180 mins); ¹H-¹³C HMBC (360 mins); ¹H-¹⁵N HMBC (130 mins).

Black ovals highlight some significant correlations, including the indole and amide nitrogens, and the carbonyl carbons.

Concluding Remarks

As more and more structural variations of known psychoactive compounds are produced to avoid specific legislation, forensic analysts are faced with the increasingly daunting task of identifying them in the absence of a reference material.² The structure of the unknown must therefore be determined from `first principles', exploiting multinuclear magnetic resonance spectroscopy and, in particular, looking beyond the typical 1D ¹H and ¹³C experiments to the valuable information contained in correlation spectra, especially ¹H-¹⁵N.

References

- 1. Uchiyama, N. et al. Two new-type cannabimimetic quinolinyl carboxylates, QUPIC and QUCHIC, two new cannabimimetic carboxamide derivatives, ADB-FUBINACA and ADBICA, and five synthetic cannabinoids detected with a thiophene derivative a-PVT and an opioid receptor agonist AH-7921 identified in illegal products. *Forensic Toxicol.* 2013 31:223-240.
- 2. Collins, M. Some new psychoactive substances: Precursor chemicals and synthesis-driven end-products. Drug Test. Analysis 2011 3:404-416.
- 3. Vang Dean, B. et al. 2C or Not 2C: Phenethylamine Designer Drug Review. J. Med. Toxicol. 2013 9:172-178.