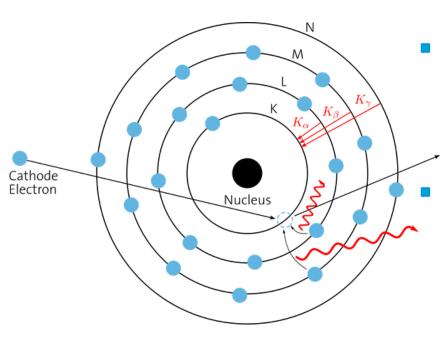
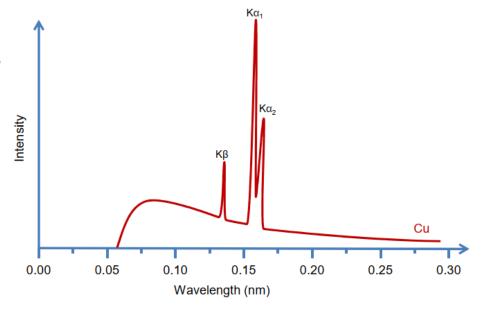

CHOICE OF X-RAY SOURCES

Ruoming Tian

XRD Lab, Mark Wainwright Analytical Centre


UNSW Sydney

GENERATION OF X-RAYS


- X-rays are generated when matter is irradiated by a beam of high-energy charged particles such as electrons.
- electrons, which are accelerated in vacuum by a high electric field in the range of 20-60kV towards a metal target (namely anode).
 - Nearly 99% of the beam energy will be dissipated as heat and only 1% of will produce the X-ray pattern.

CHARACTERISTIC RADIATION

In a copper X-ray spectrum, it produces 3 characteristic lines, $K_{\alpha 1}$, $K_{\alpha 2}$, and K_{β} .

In general, K_{α} is observed as a doublet peak in the XRD pattern and K_{β} is fileted out by a metal foil during the measurement.

CHOICE OF X-RAY SOURCES

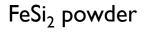
Wavelengths of typical X-ray anode materials

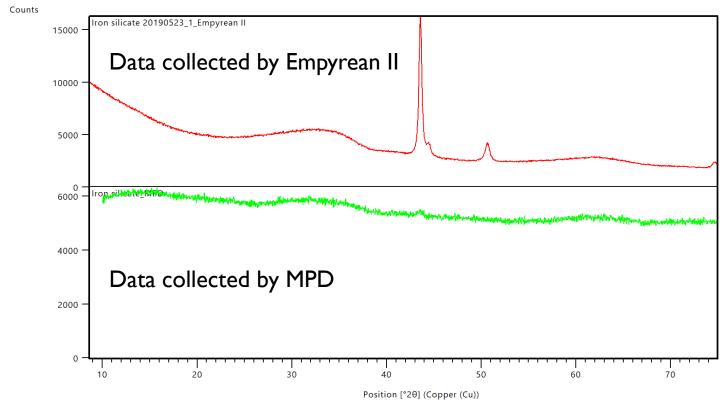
Anode materials	Κ _α (Average)	Κ _{αΙ}	K _{α2}	$\mathbf{K}_{\mathbf{\beta}}$			
Cr	2.291	2.2897	2.29361	2.08487			
Fe	1.93736	1.93604	1.93998	1.75661			
Co	1.79026	1.78897	1.79285	1.62079			
Cu	1.54184	1.54056	1.54439	1.39222			
Мо	0.71073	0.7093	0.71359	0.63229			
Ag	0.56088	0.55942	0.56381	0.49708			

- Copper anode is by far the most common source, as its wavelength (1.54 Å) matches the interatomic distance of crystalline solid materials.
- Mo is commonly used for characterising single crystals and Cr source is used for stress measurement and materials with large unit cells.
- Cobalt source is used for samples rich in Fe, Co and Mn, to eliminate fluorescence effect.

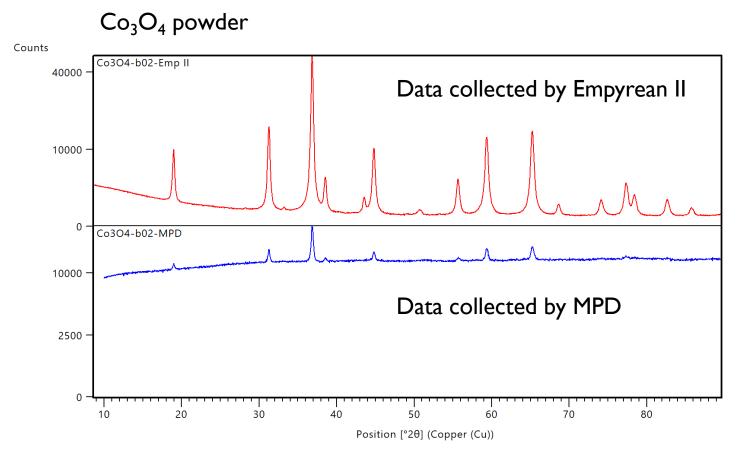
Requirements of Anode Materials

- Be metals to conduct electrons
- reasonably high melting point (45kV and 40mA generates 1.8kW heat)

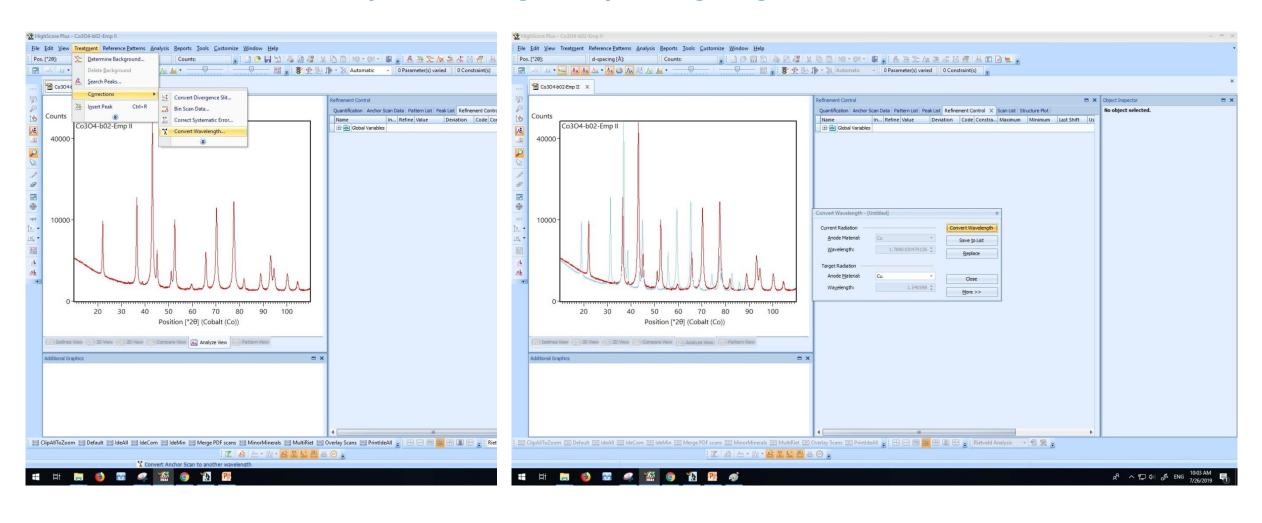

WHEN SHALL WE CHOOSE A COBALT ANODE?


Group IA																	VIIIA
H 1	All	En	Key to ergy Valu in keV	es								IIIA	IVA	VA	VIA	VIIA	He 2
0.052 Li 3	0.110 Be 4		K _{α1} K _{β1} Au 79 L _{α1} L _{β1}									0.185 B 5	0.282 C 6	0.392 N 7	0.526 O 8	0.677 F 9	0.851 Ne 10
1.04 1.07 Na 11	1.25 1.30 Mg 12	IIIB	IVB	∨B	VIΒ	VIIB		Group VIII	_	TU TU	IIB	1.49 1.55 Al 13	1.74 1.83 Si 14	2.02 2.14 P 15	2.31 2.46 S 16	2.62 2.82 CI 17	2.96 3.19 Ar 18
3.31 3.59	3.69 4.01 Ca	4.09 4.46 SC	4.51 4.93 Ti	4.95 5.43 V	5.41 5.95 Cr	5.90 6.49 Mn	6.40 7.06 Fe	6.93 7.65 Co	7.48 8.26 Ni	6.05 8.90 Cu	8.64 9.57 Zn	9.25 10.26 Ga	9.89 10.98 Ge	10.54 11.73 As	11.22 12.50 Se	11.92 13.29 Br	12.65 14.11 Kr
K 19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	0.34	0.40	0.45 0.46	0.51 0.52	0.57 0.58	U.64 U.65	0.70 0.72	0.78 0.79	0.85 0.87	0.93 0.95	1.01 1.03	1.10 1.12	1.19 1.21	1.28 1.32	1.38 1.42	1.48 1.53	1.59 1.64
13.39 14.96	14.16 15.83	14.96 16.74	15.77 17.67	16.61 18.62	17.48 19.61	18.41 19.61	19.28 21.66	20.21 22.72	21.18 23.82	22.16 24.94	23.17 26.09	24.21 27.27	25.27 28.48	26.36 29.72	27.47 30.99	28.61 32.29	29.80 33.64
Rb	Sr	Υ	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	ln	Sn	Sb	Te	1	Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
1.69 1.75	1.81 1.87	1.92 2.00	2.04 2.12	2.17 2.26 57.52 65.21	2.29 2.40	2.42 2.54	2.56 2.68 62.99 71.40	2.70 2.83 64.89 73.55	2.84 2.99	2.98 3.15	3.13 3.32	3.29 3.49	3.44 3.66	3.61 3.84	3.77 4.03	3.94 4.22	4.11 4.42
30.97 34.98	32.19 36.38		55.76 63.21		59.31 67.23				66.82 75.74	68.79 77.97	70.82 80.26	72.86 82.56	74.96 84.92	77.10 87.34		81.53 92.32	83.80 94.88
Cs	Ва	57 - 71	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
4.29 4.62 86.12 97.48	4.47 4.83 88.46 100.14	90.89 102.85	7.90 9.02 93.33 105.59	8.15 9.34 95.85 108.41	8.40 9.67 98.43 111.29	8.65 10.01	8.91 10.35 103.65 117.15	9.19 10.71	9.44 11.07	9.71 11.44	9.99 11.82 114.75 129.54	10.27 12.21 117.65 132.78	10.55 12.61		11.13 13.44	11.42 13.87	11.72 14.32
Fr	Ra	Ac	7h	Pa	U U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	Actinides
					_									101	102	103	
87	88	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	90-103
12.03 14.77	12.34 15.23	12.65 15.71 33.44 37.80	12.97 16.20 34.72 39.26	13.29 19.70 36.02 40.75	13.61 17.22 37.36 42.27	13.95 17.74 38.65 43.96	14.28 18.28 40.12 45.40	14.62 18.83 41.53 47.03	14.96 19.39 42.98 48.72	15.31 19.97 44.47 50.39	15.66 20.56 45.99 52.18	16.02 21.17 47.53 53.93	16.38 21.79 49.10 55.69	50.73 57.58	52.36 59.35	54.06 61.28	
Lantha	anides	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Но	Er	Tm	Yb	Lu	
57	74	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
57.	-71	4 65 .5 D4	484.526	5.03 5.49	5.23 5.72	5.43 5.96	0∠ 5.64 6.21	5.85 6.46	6.06 6.71	6.28 6.98	6.50 7.25	6.72 7.53	6.95 7.81	7.18 8.10	7.41 8.40	7.65 8.71	
		4.00 5.04	4.04 5.20	5.65 5.49	0.23 5.72	J.#J 5.96	3.04 B.ZI	3.03 B.46	0.00 0.71	0.20 0.30	0.50 7.25	0.72 7.53	0.00 7.01	7.10 0.10	7.41 0.40	7.00 0.71	

	K _{α1} emission energy (keV)	K-edge absorption energy (keV)
Cu	8.05	
Co		7.71
Fe		7.11
Mn		6.54


- For sample rich in Fe, Co or Mn, it will absorb a large amount of X-ray beam generated from Cu anode, as their absorption energies are close to Cu emission energy
- The florescence effect produces a relatively high background to signal ratio

CASE STUDY I



CASE STUDY 2

XRD raw data is provided by Dr Yuan Wang

How to convert x-ray wavelengths by using Highscore Plus software?

