Elemental distribution analysis Using High Performance µ-XRF Spectrometer

Solid State Elemental Analysis Unit Mark Wainwright Analytical Center

What can our XRF laboratory do?

What samples do we analyse?

- ✓ Geological samples: Rocks, soil, slags, clays, ores.
- ✓ Industrial samples: building materials, cosmetics, glass, ceramics, plastics
- ✓ Liquids: Oil, diesel fuel...

What elements do we analyse?

From B to U, from PPM to percentage level using XRF;

C, N, H, S, O analysis using elemental combustion technique.

Non-destructive analysis?

Energy dispersive XRF (Epsilon XRF, Olympus pXRF)

Elemental analysis for non-homogeneous sample?

Bruker M4 Tornado µ-XRF for elemental distribution analysis

XRF instrumentation in our laboratory

Energy Dispersive XRF			
	PANalytical Epsilon	Olympus Handheld XRF	Bruker M4 Tornado µ-XRF
Wavelength Dispersive XRF			
	PANalytical AXIOS	PANalytical PW2400	

Bruker M4 TORNADO µ-XRF

- \checkmark X-Ray optics for spot sizes of 20 μm and 150 $\mu m;$
- ✓ Rapid surveying (60 s for a single point measurement; 20 min for a 100 mm line scan);
- ✓Two Silicon drift detectors for improved sensitivity;
- ✓ Standardless quantification of bulk material and coating systems;
- \checkmark Option to measure under vacuum, helium or air.

Single point analysis

Multiple points analysis

Line scan

Area mapping

Line scan on a "Zebra" Rock

Mosaic image of the "Zebra" rock

- Test sample: "Zebra Rock"
- Source: East Kimberley, WA
- **Composition**: quartz, sericite, other minerals
- Origin: Unknown

Tube voltage: 30 kVTube current: $600 \mu \text{A}$ Time per pixel: 30 msPixel distance: $40 \mu \text{m}$ (2071 points) Cycle number: 3 cyclesPressure: 20 mbarMeasure time: $\leq 4 \text{ min}$

Mapping on a mining rock sample using µ-XRF

Elemental distribution data on a mining rock

Tube voltage: 40 kV; Tube current: 500 μ A; Time per pixel: 10 ms Pixel distance: 40 μ m = 104,100 points Pressure: 20 mbar Measure time: 15 min

Mapping data on each element

µXRF analysis on a cement sample with steel fibre

The intensity of X-ray radiation from different spots can be directly compared.

Mapping on a cement sample with steel fibre using µ-XRF

Tube voltage: 50 kV; Tube current: 600 μ A; Time per pixel: 50 ms Pixel distance: 40 μ m = 140, 000 points Pressure: 20 mbar Measure time: 2 hours

Mapping on a PCB Board

Elemental distribution on a PCB board

Test sample: PCB Board Tube voltage: 50 kV Current: 600 µA Time per pixel: 10 ms Pixel distance: 50 µm Pressure: 20 mbar Measure time: 3 h

Map data of Ti

Map data of Si

Map data of Cu

Mapping on a Metal organic framework (MOF) sample using µ-XRF

Test sample: zirconium MOF coated on a 4 mm size nickel foam.

Usage: MOF has extremely large surface area which can be utilized to capture volatile organic compounds and has high thermal stability. Mapping parameters: High voltage: 38 kV Current: 600 µA Time per pixel: 30 ms Pixel distance: 40 µm Pressure: 20 mbar

 μ -XRF is useful for elemental distribution analysis for non-homogeneous samples with no sample preparation.

