Short Courses

courses

 

Over the course of the year Stats Central teaches short courses aimed at researchers across all disciplines. Offerings in 2023 include:

  • Sample Size and Power Calculations: March 20 - 21
  •  Introduction to R: May 2
  • Introductory Statistics for Researchers using SPSS: May 10-12
  • Introductory Statistics for Researchers using R: May 15-17
  • Regression Modelling in R: May 22-24
  • Intermediate R: June 21-22
  • Introduction to R: August 8
  • Introductory Statistics for Researchers using SPSS: Aug 14-16
  • Introductory Statistics for Researchers using R: Aug 23-25

The courses will be delivered either in person or remotely using online teaching tools, with a mix of live lectures and computer-based tutorials.

2023 - Intermediate R

Course Overview

In this course, we teach students techniques for scaling up their analyses. How do you get R to repeat tasks in an efficient way? This general skill is needed in diverse contexts, such as processing lots of files (e.g. from imaging or surveys), working with large datasets, or simulations (statistical or individual-based). In these circumstances, you'll often find yourself having to repeat the same thing over and over and it's good to learn how to get R to do this in an organised and efficient manner. We'll introduce a series of powerful tools, all which take a bit of instruction and practice to master.

Course Outline

This course will cover topics including:

  • Advanced data processing with tidyverse, including dplyr, joins, nests
  • Functional programming with purrr
  • For loops
  • Writing your own functions

Presenter and Expertise: A/Professor Daniel Falster, School of Biological, Earth & Environmental Sciences (BEES)

Course Requirements: Own laptop with R (4.2 or newer) and Rstudio installed.

Course Prerequisites: Intermediate R users (have been using R for at least 6 months, comfortable loading data, using basic ggplot and dplyr)

Dates: Wednesday 21 and Thursday 22 June, 2023

Duration: 9.00am - 4.00pm, each day

Location: AGSM

You will receive a certificate of completion for the course.

New course - first time offer!

Tickets on sales now!

2023 - Introduction to R

2 May

Course Overview

R is widely used and extremely powerful statistical software. This course assumes that you have never used R before. You will learn how to obtain and install R, which is open-source software, and RStudio, which is a versatile, user-friendly interface for using R. It is very useful to do this course before our introductory statistics course, Introductory Statistics for Researchers.

This course will cover some basic features of R and lay the groundwork for you to improve your R skills independently. The course is self-paced and focused on developing practical skills.

Course Outline

This course will cover topics including:

  • Basics of interacting with R – calculations, saving variables so you can reuse them, data types and structures, organising R code in scripts

  • Tidyverse – a basic introduction to tidy R code

  • Data – reading in and organising data (from spreadsheets) with dplyr

  • Plotting – make beautiful figures with ggplot

Course Requirements: You will need a computer with administrator access (to install R and RStudio software before attending the course).

Presenter and Expertise: Peter Humburg, Biostatistician UNSW Stats Central

Date: Tuesday 2 May 2023

Duration: 9.00am - 5.00pm

Location: This workshop will be delivered in person and online

You will receive a certificate of completion for the course.

2023 - Introductory Statistics for Researchers Using SPSS

10 - 12 May

Course Overview

This workshop is designed as an introduction to statistical analysis for researchers. There is emphasis on understanding the concepts of statistical procedures (with a minimum of mathematics, although some will be discussed) and on interpreting computer output. It is designed to help you, the researcher. It is helpful if you have done an undergraduate statistics subject, although this workshop can serve as a first introduction or a refresher. The theory behind the statistical procedures will, in general, not be discussed.

A range of statistical analyses will be discussed in the workshop, as described in the outline below. We will talk through examples of all analysis types and will demonstrate how to carry them out in SPSS. Equal emphasis will also be put on interpreting the output of these analyses. There will be plenty of practical work.

You will be expected to watch this seminar on study design and statistical principles (samples and populations, confounding, statistical inference) ahead of the workshop.

Course outline

Revision

  • SPSS basics
  • Descriptive statistics – mean, mode, standard deviation, inter-quartile range, correlation
  • Data visualisation - boxplot, histogram, scatterplot, bar graph

Introduction to statistical inference

  • Uncertainty, confidence intervals, p-values, significance
  • T-test (comparing two groups)
  • Checking model assumptions

Analysis of continuous responses with linear models

  • Simple linear regression
  • ANOVA
  • Multiple regression, ANCOVA

Analysis of categorical responses

  • Relative risk, odds ratios
  • Chi-square test
  • Logistic regression

Accessibility

This is an in person course. If you wish to participate, but in person attendance is not accessible to you (e.g. you have hearing or vision impairment, parenting responsibilities, live too far) please email Gordana (g.popovic@unsw.edu.au) to arrange online attendance. The virtual component will be run using Zoom, and closed captions will be activated on request.

Slides are in PDF format, exercises are in R markdown, and both will be downloadable in advance. If HTML slides and alt text are needed to assist accessibility we will make every effort to provide these, please let us know well in advance. Lectures will be recorded and uploaded to YouTube, and available for a week following the workshop. Please email Gordana (g.popovic@unsw.edu.au) with any questions or requests.

SPSS skills

We do not require you to have any prior skills in SPSS, and we will spend the first morning getting with some very basic SPSS skills, just enough to participate in this course. We encourage you to attend the FREE Data Entry and Processing in SPSS course run by UNSW Research Technology Services May 4-5 prior to our course to really get the most out of SPSS, register early as this course fill up. Other resources include SPSS Tutorials and UCLA Institute for Digital Education and Research SPSS pages.

Prerequisites: SPSS access. If you have a UNSW zID you can access SPSS through myAccess. If you do not have a UNSW zID, we cannot provide access to SPSS.

Course requirements: You will need to bring and use your own computer during the workshop.

Date: Wednesday 10 May to Friday 12 May 2023

Duration: 9.00am - 3.00pm, each day

Location: This course will be delivered mainly in person with limited remote

You will receive a certificate of completion for the course.

2023 - Introductory Statistics for Researchers Using R

15 - 17 May

Accessibility

The virtual component will be run using Zoom, and closed captions will be activated on request. Slides are in PDF format, exercises are in R markdown, and both will be downloadable in advance. If HTML slides and alt text are needed we will make every effort to provide these, please let us know well in advance. Lectures will be recorded and available for a week following the workshop.

Important Notes - please read

1. Participants must have basic R skills prior to workshop

This is NOT an introductory workshop in using the statistical software package, R. Basic R coding will not be taught. To do this workshop successfully, you must have basic proficiency in using the R package. All examples and exercises used in this workshop are done using R. We want to ensure everyone is able to follow the material, and no participant is disappointed.

  • If you have basic R skills, that's excellent, please complete this quick task HERE. Once you have completed this and emailed your results you will be given a code to allow you to register.
  • If you do not have basic R skills, but want to do the Introductory Statistics for Researchers workshop, you can enrol in our Introduction to R course that runs ahead of this workshop, May 2- register HERE. Once you have registered, you will be given a code to allow you to register for Introductory Statistics for Researchers.

2. Own computer

You will need to bring and use your own computer during the workshop with both R and RStudio installed. You will also need administrator rights to install further packages needed throughout the workshop.

Course Overview

This workshop is designed as an introduction to statistical analysis for researchers. There is emphasis on understanding the concepts of statistical procedures (with a minimum of mathematics, although some will be discussed) and on interpreting computer output. It is designed to help you, the researcher. It is helpful if you have done an undergraduate statistics subject, although this workshop can serve as a first introduction or a refresher. The theory behind the statistical procedures will, in general, not be discussed.

A range of statistical analyses will be discussed in the workshop, as described in the outline below. We will talk through examples of all analysis types and will demonstrate how to carry them out in R. Equal emphasis will also be put on interpreting the output of these analyses. There will be plenty of practical work.

Content

You will be expected to watch this seminar on study design and statistical principles (samples and populations, confounding, statistical inference) ahead of the workshop.

Revision

  • Descriptive statistics – mean, mode, standard deviation, inter-quartile range, correlation
  • Data visualisation - boxplot, histogram, scatterplot, bar graph

Introduction to statistical inference

  • Uncertainty, confidence intervals, p-values, significance/evidence
  • T-test (comparing two groups)
  • Checking model assumptions

Analysis of continuous responses with linear models

  • Simple linear regression
  • ANOVA
  • Multiple regression, ANCOVA

Analysis of categorical responses

  • Relative risk, odds ratios
  • Chi-square test
  • Logistic regression

Course Requirements: You will need to bring and use your own computer during the workshop with both R and RStudio installed. You will also need administrator rights to install further packages needed throughout the workshop.

Presenter and Expertise: Luz Palacios-Derflingher, Biostatistician UNSW Stats Central

Date: Monday 15 to Wednesday 17 May

Duration: 9.00am - 3.00pm, each day

Location: This workshop will be delivered in person and online

You will receive a certificate of completion for the course.

2023 - Regression Modelling in R

22 - 24 May

Course Overview

The core outcome from this course is to recognise that most statistical methods you use can be understood under a single framework, as special cases of (generalised) linear models. Learning statistical methods in a systematic way, instead of as a "cookbook" of different methods, enables you to take a systematic approach to key steps in analysis (like assumption checking) and to extend your skills to handle more complex situations you might encounter in the future (random factors, multivariate analysis, choosing between a set of competing models).

This course is aimed at applied researchers with prior experience using R and familiar with introductory statistics tools - you should know about the t-test, linear regression, analysis of variance and know something about orthogonal and nested designs. If you have not used R before, we strongly recommend you learn basic features of R and how to use the RStudio interface to R before this course.

Course Outline

This course will cover topics including:

  • Linear regression — Simple linear regression, including assumptions, influential observations and inference. Equivalence of two-sample t-test and linear regression.
  • Linear models with multiple predictor variables — Multiple regression. Analysis of variance (ANOVA), including multiple comparisons
  • More linear models — Paired and blocked designs. ANCOVA. Factorial experiments. Interactions in regression.
  • Model selection — Cross-validation. Information criteria (AIC, BIC). Penalised estimation (LASSO).
  • Mixed effects models — Random effects. Linear mixed effects models. Inference for mixed models, including likelihood ratio tests, parametric bootstrap, hypothesis tests, confidence intervals. Correlated random effects.
  • Extensions — Spline smoothers, including diagnostics and interactions. Generalised linear models (GLMs).

Course Requirements: You will need to use a computer during the course. Some familiarity with introductory statistics and R will be assumed.

Presenter and Expertise: Peter Humburg, Biostatistician UNSW Stats Central

Date: Monday 22 to Wednesday 24 May 2023

Duration: 9.00am - 4.30pm, each day

Location: This workshop will be delivered in person and online

You will receive a certificate of completion for the course.

2023 - Sample Size and Power Calculations

20-21 March

Course Overview

Power calculations and sample size determination are essential parts of planning a scientific study. In this online course (run over two half-days) we will introduce the basic principles of precision-based and power-based sample size calculations. Using practical examples, we will demonstrate how to perform sample size calculations for common designs in single-sample studies and for comparing groups, as well as discussing practical issues such as multiple comparisons. No knowledge of statistical software will be required.

Course Outline

This course will cover topics including:

  • Introduction and motivation

  • Basic principles of power and sample size calculations

  • Precision-based sample size calculations

  • Power-based sample size calculations

  • Complex power calculations

  • Practical considerations & other issues

Presenter and Expertise: Mark Donoghoe, Statistical Consultant

Course Requirement: You will need to use a computer during the course.

Date: Monday 20 and Tuesday 21 March

Duration: 9.30am - 1.30pm, each day

Location: Online

2020 - Introduction to Python for Data Science

1 and 2 September

Course Overview

Python is a widely used programming language to manipulate, analyze, and visualize data. It is one of the most popular languages for Data Science, especially when dealing with complex, uncurated or text datasets.

This course assumes that you have never used Python before, but you have some basic programming knowledge. You will learn how to obtain and install Python, which is open-source software, and Jupyter Notebook, which is an interactive computational environment, in which you can combine code execution, rich text, mathematics, plots and rich media.

This two half-days introduction to Python will cover some useful features of Python for data science. It will discuss various online resources available to further develop your data science skills using Python.

Course Outline

This course will cover topics including:

• Python overview

• Jupyter Notebook

• Basic Python programming

• Typical process of data science

• Techniques to manipulate and analyze datasets

• Result visualization

• Selected statistical analysis and/or machine learning examples

Presenter and Expertise: A/Professor Raymond Wong (Stats Central and UNSW School of Computer Science and Engineering)

Course Requirements: You will need to use a computer during the course.

 

Date: Tuesday 1st to Wednesday 2nd September 2020 (two morning sessions)

Duration: 10.00am - 1.00pm each day

Location: Online

 

2020 - Text Analytics in Python (Advanced)

8 and 9 September

Course Overview

More than 70% of the data on the internet is unstructured. Among them, text is the most common form that appears in almost all data sources. For example, text data such as emails, online reviews, tweets, news and reports hold valuable information and insight for most research and applications. Text analytics, usually involving techniques from text mining or natural language processing (NLP), can automatically uncover patterns and extract meaning/context from these unstructured texts.

This course assumes that you have basic Python programming knowledge, or have previously attended "Introduction to Python for Data Science" from Stats Central. This course will provide you the foundation to process and analyze text.

In this course, we will cover some useful Python features and libraries for text processing and analysis. We will touch on some advanced topics such as sentiment analysis, text classification, and/or topic extraction.

 

Course Outline

This course will cover topics including:

• Jupyter Notebook

• Basic text operations in Python

• Text analytics and NLP

• Tokenization, stopwords, lexicon normalization, POS tagging

• Sentiment analysis and text classification

Presenter and Expertise: A/Professor Raymond Wong (Stats Central and UNSW School of Computer Science and Engineering)

Course Requirements: You will need to use a computer during the course.

 

Date: Tuesday 8 to Wednesday 9 September 2020 (two morning sessions)

Duration: 10.00am - 1.00pm each day

Location: Online

 

2020 - Study Design

19 May

Course Overview

Good study design is crucial for answering your research questions. No amount of post processing or statistical expertise can compensate for poor or inadequate study design. In this course you will lean the basic concepts of study design including how to;

  • Randomize, so that your sample can be used make inferences about the real world (the population).

  • Implement appropriate controls and manipulation to infer causation.

  • Determine adequate sample size.

We will then move on to advanced concepts, which will focus on how blocking and stratification can reduce variability and improve power (the ability to answer your research question) using a smaller sample size (hence less resources).

Practical Component

  • How to randomise – Random allocation of subjects to treatments and random sampling

  • Simple power analysis – How much data do we need to answer the question of interest?

  • We will use free online tools and the software packages, either Excel and G*Power; or R (optional).

 

Course Requirement: You will need a computer with Excel (or equivalent) and G*Power installed and access to the course.

Duration: 9.00am to 1.00pm

Location: Online